DIFFEOMORPHISMS APPROXIMATED BY ANOSOV ON THE 2-TORUS AND THEIR SBR MEASURES

NAOYA SUMI

ABSTRACT. We consider the C^2 set of C^2 diffeomorphisms of the 2-torus \mathbb{T}^2 , provided the conditions that the tangent bundle splits into the directed sum $T\mathbb{T}^2 = E^s \oplus E^u$ of Df-invariant subbundles E^s , E^u and there is $0 < \lambda < 1$ such that $\|Df|_{E^s}\| < \lambda$ and $\|Df|_{E^u}\| \geq 1$. Then we prove that the set is the union of Anosov diffeomorphisms and diffeomorphisms approximated by Anosov, and moreover every diffeomorphism approximated by Anosov in the C^2 set has no SBR measures. This is related to a result of Hu-Young.

We know that Anosov diffeomorphisms are structurally stable (Anosov [A], Robbin [R1] and Robinson [R2]) and have an SBR measure (Sinai [S1]). Recently Hu-Young [H-Y] showed that a special diffeomorphism g of the 2-torus \mathbb{T}^2 , provided the condition that for $x \in \mathbb{T}^2$ there are $0 < \lambda < 1$ and a continuous splitting $T_x\mathbb{T}^2 = E^u_x \oplus E^s_x$ of invariant subspaces E^u_x and E^s_x such that if x is not the origin then (i) $||Dg|_{E^s_x}|| \leq \lambda$, (ii) $||Dg|_{E^u_x}|| > 1$, and if p is the origin then $||Dg|_{E^u_p}|| = 1$, has no SBR measures. Such a diffeomorphism is called $almost\ Anosov$.

Let $\operatorname{Diff}^2(\mathbb{T}^2)$ be a set of C^2 diffeomorphisms on the 2-torus imposed with the C^2 topology. A diffeomorphism $f: \mathbb{T}^2 \to \mathbb{T}^2$ is called *Anosov* if f has a hyperbolic structure on all of \mathbb{T}^2 (cf. [S2]).

We denote as $A(\mathbb{T}^2)$ the open set of Anosov diffeomorphisms. Then $A(\mathbb{T}^2)$ is a proper subset of the set θ^2 of diffeomorphisms such that

- (iii) the tangent bundle $T\mathbb{T}^2$ splits into the directed sum $T\mathbb{T}^2 = E^u \oplus E^s$ of invariant subbundles E^u and E^s , and
- (iv) there exist a C^{∞} Riemannian metric $\|\cdot\|$ and $0<\lambda<1$ such that

$$||D_x f|_{E^s}|| \le \lambda, \quad ||D_x f|_{E^u}|| \ge 1.$$

Our aim is to investigate the dynamical properties of diffeomorphisms belonging to $\theta^2 \setminus A(\mathbb{T}^2)$. More precisely we state them as follows.

Theorem A. Each diffeomorphism belonging to $\theta^2 \setminus A(\mathbb{T}^2)$ is approximated by Anosov diffeomorphisms, and it has no SBR measures.

The conclusions will be obtained in proving the following three propositions.

Proposition B. Let $f \in \theta^2 \setminus A(\mathbb{T}^2)$. Then the set Λ defined by

$$\Lambda = \left\{ x \in \mathbb{T}^2 \; \middle| \; \lVert Df^n \rvert_{E^u_x} \rVert = 1 \; \textit{for} \; n \in \mathbb{Z} \right\}$$

has the following properties:

Received by the editors February 10, 1997.

1991 Mathematics Subject Classification. Primary 58F11, 58F12, 58F15.

Key words and phrases. Anosov diffeomorphism, SBR measure.

- (a) Λ is closed, nonempty and f-invariant,
- (b) Λ is expressed as the union of finite connected sets, and each connected component of Λ is either a single point or a C^2 arc which is tangential to E^u ,
- (c) each element of Λ is a periodic point, and
- (d) there exists a C^1 Riemannian metric $||| \cdot |||$ such that

$$|||Df|_{E_x^s}||| \le \lambda \quad (x \in \mathbb{T}^2),$$

 $|||Df|_{E_x^u}||| > 1 \quad (x \notin \Lambda) \text{ and}$
 $|||Df|_{E_x^u}||| = 1 \quad (x \in \Lambda).$

By Proposition B we can easily check that the following are equivalent:

- (e) Λ is a finite set,
- (f) f is expansive, i.e. there is a constant e > 0 such that $x \neq y$ $(x, y \in \mathbb{T}^2)$ implies $d(f^n(x), f^n(y)) > e$ for some integer n.

By making use of the above metric $||| \cdot |||$, we have the following:

Proposition C. Every $f \in \theta^2$ is C^2 -approximated by Anosov.

Proposition C tells us that every $f \in \theta^2$ is homotopic to an Anosov diffeomorphism. Thus there exists a hyperbolic toral automorphism homotopic to f, and so f is semi-conjugate to the toral automorphism (see [A-H]). Then we have the following:

Corollary. Let $f \in \theta^2$ and let Λ be as in Proposition B. Then there exist a hyperbolic toral automorphism $A : \mathbb{T}^2 \to \mathbb{T}^2$ and a continuous surjective map $h : \mathbb{T}^2 \to \mathbb{T}^2$ such that

$$\begin{array}{ccc}
\mathbb{T}^2 & \stackrel{f}{\longrightarrow} & \mathbb{T}^2 \\
h \downarrow & & \downarrow h \\
\mathbb{T}^2 & \stackrel{A}{\longrightarrow} & \mathbb{T}^2
\end{array}$$

commutes. If Λ is finite, then h is a homeomorphism.

The second statement of the corollary follows from the fact that every expansive homeomorphism on the 2-torus is topologically conjugate to a hyperbolic toral automorphism (cf. [H]).

Proposition D. Every $f \in \theta^2 \setminus A(\mathbb{T}^2)$ has no SBR measures.

For the proof of Proposition D we need the conclusion of Proposition B and the technique in [H-Y].

Before starting the proof of Theorem A we give the notations and the definitions that we need. Let $f \in \text{Diff}^2(\mathbb{T}^2)$ and μ be an f-invariant Borel probability measure of \mathbb{T}^2 . The measure μ is called a *Sinai-Bowen-Ruelle measure* (SBR measure for abbreviation) if for μ -almost all $x \in \mathbb{T}^2$ there exist $v \in T_x\mathbb{T}^2$ and a number $\lambda(x) > 0$ satisfying

- (A) $\lim_{n\to\pm\infty} \frac{1}{n} \log ||D_x f^n(v)|| = \lambda(x),$
- (B) μ has a conditional measure that is absolutely continuous (with respect to the Lebesgue measure) on unstable manifolds, which is defined as follows:

If ξ is a measurable decomposition of \mathbb{T}^2 , then a family $\{\mu_x^{\xi}|x\in\mathbb{T}^2\}$ of Borel probability measures exists, and it satisfies the following conditions:

- (C) for $x, y \in \mathbb{T}^2$ if $\xi(x) = \xi(y)$ then $\mu_x^{\xi} = \mu_y^{\xi}$, here $\xi(x)$ denotes a set containing x in ξ ,
- (D) $\mu_x^{\xi}(\xi(x)) = 1$ for μ -almost all $x \in \mathbb{T}^2$,
- (E) for any Borel set A a function $x \mapsto \mu_x^{\xi}(A)$ is measurable and

$$\mu(A) = \int_{\mathbb{T}^2} \mu_x^{\xi}(A) d\mu(x).$$

The family $\{\mu_x^{\xi}|x\in\mathbb{T}^2\}$ is called a *canonical system of conditional measures* for μ and ξ (see [R3] for more details).

Whenever f has the condition (A), then a set

$$W^{u}(x) = \left\{ y \in \mathbb{T}^{2} | \limsup_{n \to \infty} \frac{1}{n} \log d(f^{-n}(x), f^{-n}(y)) < 0 \right\}$$

is a unstable manifold for μ -almost all x in \mathbb{T}^2 ([P]). In fact, $W^u(x)$ is a C^2 curve which is homeomorphic to \mathbb{R} . A measurable decomposition ξ of \mathbb{T}^2 is said to be subordinate to unstable manifolds if for μ -almost all x in \mathbb{T}^2 the following conditions hold:

- (F) $\xi(x) \subset W^u(x)$,
- (G) $\xi(x)$ contains an open arc of x in $W^u(x)$.

Let $x \in \mathbb{T}^2$ and m_x^u denote the Lebesgue measure of $W^u(x)$. Then a Borel probability measure μ is called an absolutely continuous conditional measure on unstable manifolds provided the condition that each μ_x^ξ in a canonical system of conditional measures is absolutely continuous to m_x^u for μ -almost all x in \mathbb{T}^2 if ξ is a measurable decomposition that is subordinate to unstable manifolds. It is known (see [S1], [B], [L]) that every Anosov diffeomorphism has a unique SBR measure.

Proof of Proposition B. It is clear that Λ is a f-invariant closed set. Thus, to obtain (a) it suffices to show that Λ is nonempty. Since f is not Anosov, for $\eta > 1$ and $N \geq 1$ there exists $x = x(\eta, N) \in \mathbb{T}^2$ such that for $1 \leq n \leq N$

$$||Df^n|_{E_x^u}|| \le \eta.$$

Indeed, if this is false, then we can find $\eta_0 > 1$ and $N_0 \ge 1$ such that for $x \in \mathbb{T}^2$ there exists $1 \le n \le N_0$ satisfying $\|Df^n|_{E^u_x}\| > \eta_0$. Thus, for $N \ge 1$ and $x \in \mathbb{T}^2$ there exist n_i $(1 \le i \le k)$ and $0 \le \ell \le N_0 - 1$ such that $N = n_1 + n_2 + \cdots + n_k + \ell$ and $\|Df^{n_{i+1}}|_{E^u_{x_i}}\| > \eta_0$ for $0 \le i \le k - 1$ where

$$x_i = \begin{cases} x & (i = 0), \\ f^{n_1 + n_2 + \dots + n_i}(x) & (1 \le i \le k). \end{cases}$$

Since $||Df|_{E_u^u}|| \geq 1$ for $y \in \mathbb{T}^2$, we have

$$||Df^{N}|_{E_{x}^{u}}|| = \prod_{0}^{k-1} ||Df^{n_{i+1}}|_{E_{x_{i}}^{u}} |||Df^{\ell}|_{E_{x_{k}}^{u}}|| > (\eta_{0})^{k}$$
$$\geq (\eta_{0})^{\left[\frac{N}{N_{0}}\right]} \geq (\eta_{0})^{\frac{N}{N_{0}}-1} = (\eta_{0})^{-1} \{(\eta_{0})^{\frac{1}{N_{0}}}\}^{N}.$$

Put $C = \eta_0^{-1}$ and $\eta_1 = (\eta_0)^{\frac{1}{N_0}}$. Since η_1 and C are independent of x in \mathbb{T}^2 , f is Anosov. This is a contradiction.

Therefore, for $N \geq 1$ there is $x_N \in \mathbb{T}^2$ satisfying $1 \leq \|Df^n|_{E^u_{x_N}}\| \leq 1 + \frac{1}{N}$ for $1 \le n \le 2N+1$. If $f^N(x_N) \to x_0$ (take a subsequence if necessary), then we have that for $i \in \mathbb{Z}$

$$1 \leq \|Df^i|_{E^u_{x_0}}\| = \lim_{N \to \infty} \|Df^i|_{E^u_{f^N(x_N)}}\| \leq \lim_{N \to \infty} \left(1 + \frac{1}{N}\right) = 1,$$

from which Λ is nonempty. (a) is proved.

To show (d), let $\pi: \mathbb{R}^2 \to \mathbb{T}^2$ denote the natural projection and put $e_j =$ $D\pi(\frac{\partial}{\partial x_i})$ for j=1,2. Since f is of C^2 , we remark that for $i\in\mathbb{Z}$ and j=1,2, $\varphi_{i,j}(x) = \|D_x f^i(e_j)\|$ is a C^1 function. Choose a sequence $\{\delta_i\}_{i\geq 0}$ of positive numbers satisfying

$$\sum_{i\in\mathbb{Z}} \delta_{|i|} \max\{\varphi_{i,j}(x)^2, \|D_x\varphi_{i,j}\|^2 | x \in \mathbb{T}^2, j=1,2\} < \infty,$$

and define a C^1 Riemannian metric $||| \cdot |||$ on $T\mathbb{T}^2$ by

$$|||v|||^2 = \sum_{i \in \mathbb{Z}} \delta_{|i|} ||D_x f^i(v)||^2 \quad (x \in \mathbb{T}^2, \ v \in T_x \mathbb{T}^2).$$

Then it is easily checked that $|||\cdot|||$ satisfies Proposition B (d). To show (b) we take a covering map $\bar{\pi}: \mathbb{T}^2 \to \mathbb{T}^2$ such that $\bar{E}_x^{\sigma} = (D_x \bar{\pi})^{-1} E_x^{\sigma}$ $(x \in \mathbb{T}^2, \sigma = s, u)$ is orientable. In fact, $\bar{\pi}$ is 4 to 1. Let $\bar{f}: \mathbb{T}^2 \to \mathbb{T}^2$ be a lifting of f by $\bar{\pi}$. Then we have that for $x \in \mathbb{T}^2$

$$D_x \bar{f}(\bar{E}_x^{\sigma}) = \bar{E}_{\bar{f}(x)}^{\sigma} \quad (\sigma = s, u),$$
$$\|D_x \bar{f}|_{\bar{E}_x^s}\| \le \lambda,$$
$$\|D_x \bar{f}|_{\bar{E}_x^u}\| \ge 1.$$

Since $\bar{f}^2: \mathbb{T}^2 \to \mathbb{T}^2$ preserves an orientation of \bar{E}^{σ}_x ($\sigma = s, u$), for simplicity we replace \bar{f}^2 and \bar{E}^{σ} by f and E^{σ} respectively. Then we can construct a C^0 vector field $X^{\sigma}: \mathbb{T}^2 \to E^{\sigma}$ ($\sigma = s, u$) which has no singularities.

From the definition of E^s it follows that X^s is a C^1 vector field. This is checked by using the ideas in the proof of Theorem 6.3 in [H-P]. Thus a C^1 foliation of s-direction, \mathcal{F}^s , is constructed. For $x \in \mathbb{T}^2$ denote by $W^s(x)$ a leaf containing x. Then $W^s(x)$ is a C^2 curve which is homeomorphic to \mathbb{R} , and has the properties that $T_yW^s(x)=E^s_y$ and $d(f^n(x),f^n(y))\to 0\ (n\to\infty)$ for $y\in W^s(x)$. Define $W^s_{\varepsilon}(x) = \{y \in W^s(x) | d_s(x,y) \leq \varepsilon\}$ where d_s denotes the distance between two points along $W^s(x)$. Then we have

$$W^s(x) = \bigcup_{n=0}^{\infty} f^{-n}(W^s_{\varepsilon}(f^n(x))) \quad (x \in \mathbb{T}^2).$$

We need a C^0 -foliation of u-direction on \mathbb{T}^2 later. To construct it we must use the splitting

$$||Df|_{E_x^s}|||Df^{-1}|_{E_{f(x)}^u}|| \le \lambda \quad (x \in \mathbb{T}^2)$$

which is called a dominated splitting of $T\mathbb{T}^2$. The splitting is obtained from (iv) in the definition of θ^2 . Though the correspondence $x \mapsto E_x^u$ is continuous, by the dominated splitting it is ensured (see [M]) that there exists a family $\{W^u_{\varepsilon}(x)|x\in\mathbb{T}^2\}$ of C^2 arcs satisfying the conditions:

1.
$$\tilde{W}^u_{\varepsilon}(x) \subset B_{\varepsilon}(x) = \{ y \in \mathbb{T}^2 | d(x,y) \le \varepsilon \} \text{ for } x \in \mathbb{T}^2,$$

- 2. $T_x \tilde{W}^u_{\varepsilon}(x) = E^u_x$ for $x \in \mathbb{T}^2$, 3. letting $\tilde{W}^u_{\varepsilon'}(x) = B_{\varepsilon'}(x) \cap \tilde{W}^u_{\varepsilon}(x)$ for $0 < \varepsilon' \le \varepsilon$, one can find $\varepsilon' > 0$ such that

$$f(\tilde{W}^u_{\varepsilon'}(x)) \subset \tilde{W}^u_{\varepsilon}(f(x)), \quad f^{-1}(\tilde{W}^u_{\varepsilon'}(x)) \subset \tilde{W}^u_{\varepsilon}(f^{-1}(x)),$$

4. the correspondence $x \mapsto \tilde{W}^u_{\varepsilon}(x)$ is continuous with respect to the C^2 metric. Thus there exists $\delta > 0$ such that if $d(x,y) < \delta$ then $W^s_{\varepsilon}(x) \cap \tilde{W}^u_{\varepsilon}(y)$ is one point and $W^s_{\varepsilon}(x)$ is transverse to $\tilde{W}^u_{\varepsilon}(y)$. Then we write $[x,y] = W^s_{\varepsilon}(x) \cap \tilde{W}^u_{\varepsilon}(y)$.

Lemma 1. For $x \in \mathbb{T}^2$ the integral curve of X^u through x, γ_x , contains the arc $W^u_{\delta}(x)$.

Proof. Suppose $\tilde{W}^u_{\delta}(x) \not\subset \gamma_x$ for some $x \in \mathbb{T}^2$. Then we can take $y \in B_{\delta}(x) \cap \gamma_x$ such that $y \notin \tilde{W}^u_{\delta}(x)$. Thus, $[y,x] = W^s_{\varepsilon}(y) \cap \tilde{W}^u_{\varepsilon}(x)$. Since $||Df^{-1}|_{E^u}|| \leq 1$, we have $d(f^{-1}(y), f^{-1}(x)) < \delta$ and then

$$[f^{-1}(y), f^{-1}(x)] = W_{\varepsilon}^{s}(f^{-1}(y)) \cap \tilde{W}_{\varepsilon}^{u}(f^{-1}(x))$$

and thus $f^{-1}([y,x]) = [f^{-1}(y), f^{-1}(x)]$. Repeating this manner, we have

$$f^{-n}([y,x]) \in W^s_{\varepsilon}(f^{-n}(y)), \quad f^{-n}([y,x]) \neq f^{-n}(y) \quad (n \ge 0).$$

Using the fact that $||Df^{-n}|_{E^s}|| \geq \lambda^{-n}$, we have

$$d_s(f^{-n}([y,x]), f^{-n}(y)) \ge \lambda^{-n} d_s([y,x],y).$$

This is a contradiction.

Since the integral curve γ_x is unique, a C^0 foliation of u-direction, \mathcal{F}^u , is constructed. Denote as $W^{u}(x)$ the leaf containing x in \mathcal{F}^{u} . Then it follows that $T_yW^u(x)=E^u_y$ and $\tilde{W}^u_\varepsilon(y)\subset W^u(x)$ for $y\in W^u(x)$. Remark that each leaf $W^u(x)$ is a C^2 curve.

Lemma 2. For $x, y \in \mathbb{T}^2$ the cardinality of $W^u(x) \cap W^s(y)$ is infinite.

Proof. We first prove the lemma when $W^u(x)$ is homeomorphic to \mathbb{R} . Since the length of $W^u(x)$, $\ell(W^u(x))$, is infinite, we can find $z_1, z_2 \in W^u(x)$ such that $d(z_1, z_2) < \delta$ and $\tilde{W}^u_{\varepsilon}(z_1) \cap \tilde{W}^u_{\varepsilon}(z_2) = \varnothing$.

Since $[z_1,z_2]=\overset{\smile}{W_\varepsilon^s}(z_1)\cap\overset{\smile}{\tilde{W}_\varepsilon^u}(z_1)\subset W^u(x)$, we denote by γ the closed curve which combine the arc in $W^u(x)$ from $[z_1, z_2]$ to z_1 with the arc in $W^s_{\varepsilon}(z_1)$ from z_1 to $[z_1, z_2]$. We can suppose that γ is a Jordan closed curve.

If γ is not zero-homotopic, we then obtain the conclusion of Lemma 2. Indeed, let $y \in \mathbb{T}^2$. By the assumption, $\mathbb{T}^2 \setminus \gamma$ is homeomorphic to an annulus. If $W^s(y)$ does not intersect to γ , we then have a contradiction since the existence of a periodic solution of X^s in $\mathbb{T}^2 \setminus \gamma$ is ensured by the Poincaré-Bendixon theorem (Figure 1).

Thus it suffices to prove that γ is not zero-homotopic. If it is false, then there exists a 2-disk D in \mathbb{T}^2 such that the boundary of D is equal to γ . Since a C^1 vector field $X^s: D \to E^s$ has no singular points, there is a periodic solution in D by the Poincaré-Bendixon theorem. This contradicts the fact that each leaf in \mathcal{F}^s is homeomorphic to \mathbb{R} .

When $W^{u}(x)$ is a closed curve, we obtain also the conclusion of the lemma. \square

Lemma 3. For $x \in \mathbb{T}^2$, $cl(W^u(x)) = \mathbb{T}^2$ where cl(E) denotes the closure of E.

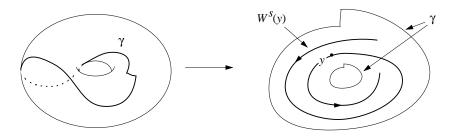


Figure 1

Proof. We first prove that $W^u(x)$ is homeomorphic to \mathbb{R} . If this is false, then there exists $z \in \mathbb{T}^2$ such that $W^u(z)$ is homeomorphic to a circle. Since $||Df^{-1}|_{E^u}|| \leq 1$, we have

$$\dots \le \ell(W^u(f^{-2}(z))) \le \ell(W^u(f^{-1}(z))) \le \ell(W^u(z)).$$

Let $\alpha(z)$ denote the set of α -limit points of z. Take and fix $w \in \alpha(z)$. Then we have $\ell(W^u(f^n(w))) = \ell(W^u(w))$ for $n \in \mathbb{Z}$, and so $W^u(w)$ is contained in Λ .

By Lemma 2 we can take $z_1, z_2 \in W^u(w)$ $(z_1 \neq z_2)$ such that $z_2 \in W^s(z_1)$ and $d_u(z_1, z_2) \leq \delta$ where d_u denotes the distance between two points along $W^u(w)$. Since $W^u_\delta(z_1) \subset \Lambda$, we have $f^n(z_2) \in W^u_\delta(f^n(z_1)) \cap W^s_\delta(f^n(z_1))$ for some n > 0, and thus $f^n(z_2) = f^n(z_1)$. This is a contradiction.

Let $x, y \in \mathbb{T}^2$ and let U be a small neighborhood of y. To show the density of $W^u(x)$ it suffices to see that $U \cap W^u(x) \neq \emptyset$. Take a C^2 arc $I \subset W^s_{\delta}(y) \cap U$. Since $\|Df^{-1}|_{E^s}\| \geq \lambda^{-1}$, we have

$$\ell(f^{-n}(I)) \to \infty \quad (n \to \infty).$$

In a way similar to the proof of Lemma 2, we have $f^{-n}(I) \cap W^u(f^{-n}(x)) \neq \emptyset$ for some n > 0 because each leaf of \mathcal{F}^u is homeomorphic to \mathbb{R} . Therefore, $U \cap W^u(x) \supset I \cap W^u(x) \neq \emptyset$.

We remark that Lemma 3 is not true for $W^s(x)$.

Lemma 4. For $x \in \Lambda$ let I be a C^2 arc containing x such that $I \subset \tilde{W}^u_{\delta}(x)$. If $\ell(I)$ is positive, then

$$\sum_{n=0}^{\infty} \ell(f^{-n}(I)) = \infty.$$

Proof. For $\{\tilde{W}^u_\delta(x)|x\in\mathbb{T}^2\}$ a family of C^2 arcs

$$\max_{x \in \mathbb{T}^2} \left| \frac{d^2}{dy^2} \left(f|_{\tilde{W}^u_\delta(x)} \right) (y) \right|$$

is bounded by K from above. Since $f^{-n}(x) \in \Lambda$ and $T_{f^{-n}(x)}\tilde{W}^u_{\delta}(f^{-n}(x)) = E^u_{f^{-n}(x)}$ for $n \geq 0$, clearly

$$\frac{d}{dy}\left(f|_{\tilde{W}^u_\delta(f^{-n}(x))}\right)(0)=1.$$

By Taylor's Theorem the graph of $f|_{\tilde{W}^u_{\delta}(f^{-n}(x))}$ satisfies $\left|\left(f|_{\tilde{W}^u_{\delta}(f^{-n}(x))}\right)(y)\right| \leq |F(y)| \ (|y| \leq \delta, \ n \geq 0)$ where

$$F(y) = \begin{cases} y + Ky^2 & (y \ge 0), \\ y - Ky^2 & (y < 0). \end{cases}$$

Thus, $\ell(f^{-n}(I)) \geq F^{-n}(\delta)$. Since $\sum_{0}^{\infty} F^{-n}(\delta) = \infty$ by ([H-Y] Lemma 4.1), we have $\sum_{0}^{\infty} \ell(f^{-n}(I)) = \infty$.

Since \mathcal{F}^s is a C^1 foliation of \mathbb{T}^2 , we easily have the following:

Lemma 5. For $x \in \mathbb{T}^2$ suppose that I and J are C^2 arcs contained in $W^s_{\delta}(x)$ and $\tilde{W}^u_{\delta}(x)$ respectively. Then there exists $\kappa > 0$ such that

$$m([I,J]) \ge \kappa \ell(I)\ell(J)$$

where m is the Lebesgue measure of \mathbb{T}^2 .

Let C(x) denote the connected component of x in Λ .

Lemma 6. $C(x) \subset W^u(x)$ for $x \in \Lambda$.

Proof. If $C(x) \not\subset W^u(x)$ for some $x \in \Lambda$, then there exist $y \in C(x)$ and $\eta > 0$ such that $W^u_{\epsilon}(y') \cap \Lambda \neq \emptyset$ for $y' \in W^s_{\eta}(y)$. Take $z \in \alpha(y)$. Then we have $W^s(z) \subset \Lambda$. Since $\|Df|_{E^s_x}\| < \lambda$ and $\|Df|_{E^u_x}\| = 1$ for $x \in \Lambda$, we have $\Lambda \neq \mathbb{T}^2$. Therefore, $\operatorname{cl}(W^s(z)) \neq \mathbb{T}^2$.

Fix $w \in \mathbb{T}^2 \setminus \operatorname{cl}(W^s(z))$. Let U denote the arcwise connected component of w in $\mathbb{T}^2 \setminus \operatorname{cl}(W^s(z))$. Obviously U is open and $f^{-n}(U)$ is the arcwise connected component of $f^{-n}(w)$ in $\mathbb{T}^2 \setminus \operatorname{cl}(W^s(z))$ for every n > 0. Then we have two cases:

- (5) $f^{-n}(U) \cap U = \emptyset$ for all n > 0,
- (6) $f^{-n_0}(U) = U$ for some $n_0 > 0$.

For (5) we have $\sum_{n=0}^{\infty} m(f^{-n}(U)) = \infty$. Indeed, from Lemma 3 it follows that the length of the arcwise connected component I of w in $W^u(w) \cap U$ is finite. Let w' be one of the end points of I. Since U is open, w' must belong to $\operatorname{cl}(W^s(z)) \subset \Lambda$. Thus Lemmas 4 and 5 ensure that

$$\sum_{n=0}^{\infty} m(f^{-n}(U)) \ge \sum_{n=0}^{\infty} m([W_{\delta}^{s}(f^{-n}(w')), f^{-n}(I)])$$

$$\ge \sum_{n=0}^{\infty} \kappa \ell(W_{\delta}^{s}(f^{-n}(w'))) \ell(f^{-n}(I))$$

$$\ge 2\kappa \delta \sum_{n=0}^{\infty} \ell(f^{-n}(I))$$

$$= \infty.$$

When (6) holds, we also have $m(U) = \infty$. Indeed, let I and w' be as above. Since f is orientation preserving, we have $f^{-n_0}(W^s(w')) = W^s(w')$. Thus $f^{-n_0}: W^s(w') \to W^s(w')$ is expanding since $\|Df^{-1}|_{E^s}\| \geq \lambda^{-1}$, and so there exists a unique fixed point $p \in W^s(w')$ of f^{-n_0} . Without loss of generality we suppose that $p \neq w'$. Then w' is not a periodic point. Thus, for r > 0 small enough we have

$$[W_r^s(f^{-kn_0}(w')), f^{-kn_0}(I)] \cap [W_r^s(f^{-k'n_0}(w')), f^{-k'n_0}(I)] = \varnothing \quad (k \neq k'),$$

and thus by Lemmas 4 and 5

$$\begin{split} m(U) &\geq m \left(\bigcup_{k=0}^{\infty} [W_r^s(f^{-kn_0}(w')), f^{-kn_0}(I)] \right) \\ &= \sum_{k=0}^{\infty} m([W_r^s(f^{-kn_0}(w')), f^{-kn_0}(I)]) \\ &\geq \sum_{k=0}^{\infty} \kappa \ell(W_r^s(f^{-kn_0}(w'))) \ell(f^{-kn_0}(I)) \\ &\geq 2\kappa r \sum_{k=0}^{\infty} \ell(f^{-kn_0}(I)) = \infty. \end{split}$$

In any case we have $m(\mathbb{T}^2) = \infty$. This is a contradiction.

Lemma 6 tells us that C(x) is either a single point, or a C^2 arc in $W^u(x)$. We remark that $\ell(C(x))$ is finite. This follows from the fact if $\ell(C(x))$ is infinite then $\operatorname{cl}(C(x)) = \mathbb{T}^2$ by Lemma 3. Therefore the second statement of Proposition B (b) was proved.

Since $||Df|_{E_y^u}|| = 1$ for $y \in C(x)$, the length of C(x) is f-invariant. Then, using the next lemma, it follows that $f^{m(x)}|_{C(x)}$ is the identity map of C(x). This implies Proposition B (c).

Lemma 7. For $x \in \Lambda$ there exists m = m(x) > 0 such that $f^m(C(x)) = C(x)$.

Proof. We first prove the lemma for the case when C(x) is a C^2 arc. To see so let y be one of the end points of C(x) in $W^u(x)$. It is clear that $\alpha(y) \subset \Lambda$. If we establish that $\alpha(y)$ is finite, then each element belonging to $\alpha(y)$ is periodic. Thus there is $z \in \alpha(y)$ such that $y \in W^u(z)$. Then we have y = z. Indeed, if $y \neq z$ and $f^{-i}(z) = z$, then we have that for k > 0

$$d_u(y,z) = d_u(y,f^{-i}(y)) + d_u(f^{-i}(y),f^{-2i}(y)) + \dots + d_u(f^{-ki}(y),z).$$

Thus we have $d_u(y, z) = \infty$ by Lemma 4 since k is arbitrary. This is a contradiction. Therefore y is periodic. Let m be the period of y by f. Then $f^m(C(x)) = C(x)$ since y is an end point of C(x), and since the length of C(x) is f-invariant. Thus it suffices to prove that $\alpha(y)$ is finite.

We first prove that $\alpha(y)$ is totally disconnected. If this is false, then there exists $z \in \alpha(y)$ such that $\tilde{W}^u_{\eta}(z) \subset \alpha(y)$ for small $\eta > 0$. Choose an increasing sequence $\{n_k\}$ such that $\{f^{-n_k}(y)\}$ converges to z as $k \to \infty$. Then $[f^{-n_k}(y), z]$ converges to z as $k \to \infty$. Since

$$d(y, f^{n_k}(z)) \leq d_s(y, f^{n_k}([f^{-n_k}(y), z])) + d_u(f^{n_k}([f^{-n_k}(y), z]), f^{n_k}(z))$$

$$\leq \lambda^{n_k} d_s(f^{-n_k}(y), [f^{-n_k}(y), z]) + d_u([f^{-n_k}(y), z], z)$$

$$\to 0 \quad (k \to \infty),$$

 $f^{n_k}(\tilde{W}^u_{\eta}(z))$ converges to $\tilde{W}^u_{\eta}(y)$ under the Hausdorff topology. Remark that $f^{n_k}(\tilde{W}^u_{\eta}(z)) \subset \Lambda$ for k > 0 (and then $\tilde{W}^u_{\eta}(y) \subset \Lambda$). Then we have $\tilde{W}^u_{\eta}(y) \subset C(x)$, thus contradicting the choice of y. Therefore $\alpha(y)$ is totally disconnected.

Suppose that $\alpha(y)$ is infinite to obtain a contradiction. For $w \in \mathbb{T}^2$, $\tilde{W}^u_{\epsilon}(w) \setminus \{w\}$ is expressed as the union $\tilde{W}^u_{\epsilon}(w) \setminus \{w\} = I^1_w \cup I^2_w$ of C^2 arcs I^1_w and I^2_w in $W^u(w)$

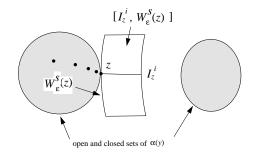


Figure 2

with $I_w^1 \cap I_w^2 = \emptyset$. Since the collection of open closed subsets of $\alpha(y)$ is a base of $\alpha(y)$, there exist a non-periodic point $z \in \alpha(y)$ and i = 1 or 2) such that

(7)
$$\operatorname{int}([I_z^i, W_{\epsilon}^s(z)]) \cap \alpha(y) = \emptyset$$

for $\varepsilon > 0$ small enough (Figure 2). Indeed, if z is a periodic point, then we have $y \notin W^u(z)$ since $\alpha(y)$ and the orbit of z agree when $y \in W^u(z)$, and since $\alpha(y)$ is infinite by the assumption. Thus $\{\alpha(y) \cap W^s(z)\} \setminus \{z\}$ is nonempty, then we can take a non-periodic point from the set. Notice that $f^{-n}(z) \notin W^s_{\epsilon}(z)$ (n > 0) for sufficiently small $\epsilon > 0$. For simplicity put $I_z = I^i_z$.

Take and fix $\tau > 0$ small enough. We define $R_n = [f^{-n}(I_z), W^s_{\tau}(z)]$ for $n \geq 0$. Then, $R_{n+1} \subset f^{-1}(R_n)$ for all $n \geq 0$, and $R_n \cap R_m = \emptyset$ for all $n \neq m$. Indeed, suppose $R_m \cap R_n \neq \emptyset$ for some $m > n \geq 0$. Put k = m - n. Since

$$\varnothing \neq f^n(R_m \cap R_n) \subset f^n(f^{-n}(R_k) \cap f^{-n}(R_0)) = R_k \cap R_0,$$

we have that $z \in \operatorname{int}([f^{-k}(I_z), W^s_{\epsilon}(f^{-k}(z))])$ since $f^{-k}(z) \notin W^s_{\epsilon}(z)$. Therefore, $f^k(z) \in \operatorname{int}([I_z, W^s_{\epsilon}(z)])$, thus contradicting (7).

Since $R_n \cap R_m = \emptyset$ for all $n \neq m$, by Lemmas 4 and 5,

$$m\left(\bigcup_{n\geq 0} R_n\right) = \sum_{n\geq 0} m(R_n)$$

$$\geq \sum_{n\geq 0} \kappa \ell(f^{-n}(I_z))\ell(W_\tau^s(z))$$

$$\geq 2\kappa \tau \sum_{n\geq 0} \ell(f^{-n}(I_z))$$

$$= \infty.$$

But this is impossible. Therefore $\alpha(x)$ is finite.

When C(x) is a single point, we also obtain the conclusion of the lemma.

To complete the proof of Proposition B it suffices to show that Λ splits into the union of finite connected sets. To obtain it suppose the cardinality of $\{C(x)|x\in\Lambda\}$ is infinite. If $\{x_i\}$ is an infinite sequence in Λ and $x_i\to x$ as $i\to\infty$, then x is also a periodic point by Proposition B (c).

If $x_i \in W^u(x)$ for some i, then x and x_i are joined by a C^2 arc I in $W^u(x)$. Since $||Df^{-1}|_{E^u}|| \le 1$, we have $\ell(f^{-n}(I)) \le \ell(I)$ for n > 0. Thus, $\ell(f^n(I)) = \ell(I)$ for all $n \in \mathbb{Z}$ because x_i and x are periodic points. This implies that $C(x_i) = C(x)$.

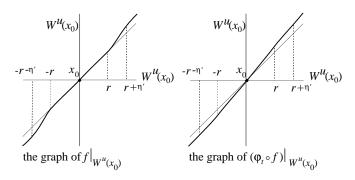


FIGURE 3

Since the cardinality of $\{C(x)|x\in\Lambda\}$ is infinite, we may assume that $x_i\notin W^u(x)$ for all i.

Since $x_i \notin W^u(x)$ for all $i \geq 0$, we can find $y \in W^s(x)$ such that $y \in \Lambda$ and $y \neq x$. Then $y \in \Lambda$ is not a periodic point. This contradicts Proposition B (c). Therefore Λ is expressed as the union of finite connected sets.

Proof of Proposition C. Let Λ be as in Proposition B. We give the proof of Proposition C for the case when Λ is a C^2 arc. When Λ is a single point, or in general, then the conclusion is obtained in a similar argument.

For $x \in \mathbb{T}^2$ and r > 0 we define $W_r^u(x) = \{y \in W^u(x) | d_u(x,y) \leq r\}$. Since Λ is a C^2 arc which is tangential to E^u , Λ is expressed as $\Lambda = W_r^u(x_0)$ for some $x_0 \in \Lambda$ and r > 0. For $\eta > 0$ small enough define

$$R_{\eta} = \bigcup_{x \in W_{r+\eta}^u(x_0)} W_{\eta}^s(x).$$

Since $\Lambda \subset \operatorname{int} R_{\eta}$, by Proposition B (d) there exists $\varepsilon > 0$ such that

(8)
$$|||D_x f|_{E^u}||| > e^{\varepsilon} \quad (x \notin R_\eta)$$

where $|||\cdot|||$ is the norm as in Proposition B. A projection $\pi^u: R_{\eta} \to W^u_{r+\eta}(x_0)$ defined by $\{\pi^u(x)\} = W^s_{\eta}(x) \cap W^u_{r+\eta}(x_0)$ for $x \in R_{\eta}$ is a C^1 map, since \mathcal{F}^s is a C^1 foliation of \mathbb{T}^2 .

Since $||D_x\pi^u|_{E^u}||=1$ for $x\in\Lambda$, we have that for $0<\eta'$ $(<\eta)$ small enough

(9)
$$e^{-\varepsilon/5} \le |||D_x \pi^u|_{E^u}||| \le e^{\varepsilon/5} \quad (x \in R_{\eta'}).$$

Then we can construct a one-parameter family $\varphi_t: \mathbb{T}^2 \to \mathbb{T}^2 \ (t \in [0,1])$ which satisfies the following:

- (10) φ_t is a C^2 diffeomorphism for $t \in [0, 1]$,
- (11) $d_2(\varphi_t, id) \to 0$ as $t \to 0$ where d_2 and id denote a C^2 metric and the identity map respectively,
- (12) $\varphi_t(x) = x$ for $t \in [0,1]$ and $x \notin R_{\eta'}$,
- (13) for $t \in (0,1]$, $\varphi_t(W^u_{r+\eta'}(x_0)) = W^u_{r+\eta'}(x_0)$ and $||D_x(\varphi_t \circ f)|_{E^u}|| > 1$ $(x \in W^u_{r+\eta'}(x_0))$ (Figure 3).

Put $f_t = \varphi_t \circ f$ for $t \in [0, 1]$. Clearly f_t is a C^2 diffeomorphism for $t \in [0, 1]$ (by (10)) and f is approximated by $\{f_t\}$ with respect to the C^2 topology (by (11)).

The remainder of the proof is only to show that f_t is Anosov for small $t \in (0, 1]$. By (8) and Proposition B, f satisfies

$$\begin{cases} |||D_x f|_{E^s}||| |||D_{f(x)} f^{-1}|_{E^u}||| \le \lambda & (x \in \mathbb{T}^2), \\ |||D_x f|_{E^s}||| \le \lambda & (x \in \mathbb{T}^2), \\ |||D_x f|_{E^u}||| > e^{\varepsilon} & (x \notin R_{\eta}), \\ |||D_x f|_{E^u}||| > 1 & (x \notin R_{\eta'}). \end{cases}$$

Then we can choose $t_0 > 0$ such that for $0 < t < t_0$ there exist $\lambda < \lambda' < 1$ and a Df_t invariant splitting $T_x \mathbb{T}^2 = E_x^u(t) \oplus E_x^s(t)$ $(x \in \mathbb{T}^2)$ satisfying

$$\begin{cases} |||D_{x}f_{t}|_{E^{s}(t)}||| |||D_{f(x)}f_{t}^{-1}|_{E^{u}(t)}||| \leq \lambda' & (x \in \mathbb{T}^{2}), \\ |||D_{x}f_{t}|_{E^{s}(t)}||| \leq \lambda' & (x \in \mathbb{T}^{2}), \\ |||D_{x}f_{t}|_{E^{u}(t)}||| > e^{\varepsilon/2} & (x \notin R_{\eta}), \\ |||D_{x}f_{t}|_{E^{u}(t)}||| > 1 & (x \notin R_{\eta'}). \end{cases}$$

Fix t with $0 < t < t_0$. In the same manner as the proof of Proposition B construct a C^1 foliation $\mathcal{F}^s_t = \{W^s(x,t)\}_{x \in \mathbb{T}^2}$ which is tangential to $E^s(t)$. Denote by $W^s_{\eta}(x,t)$ the set of $y \in W^s(x,t)$ such that $d_s(x,y) \leq \eta$, and define a projection $\pi^u_t : R_{\eta'} \to W^u_{r+\eta}(x_0)$ by

$$\{\pi_t^u(x)\} = W_\eta^s(x,t) \cap W_{r+\eta}^u(x_0) \quad (x \in R_{\eta'}).$$

By (9) we can assume that for every $x \in R_{n'}$

(14)
$$e^{-\varepsilon/4} \le |||D_x \pi_t^u|_{E^u(t)}||| \le e^{\varepsilon/4}$$

(by taking t_0 sufficiently small if necessary).

Put $\mu_t = \inf\{|||D_x f_t|_{E^u(t)}||| |x \in W^u_{r+\eta}(x_0)\}$. Then, $\mu_t > 1$ by (12) and (13). If $f^i(x) \in R_{\eta'}$ for $0 \le i \le n$, then we have $|||D_x f^n_t|_{E^u(t)}||| \ge e^{-\varepsilon/2} \mu^n_t$. This follows from the fact that by (14)

$$|||D_x f_t^n|_{E^u(t)}||| \ge |||(D_{f_t^n(x)} \pi_t^u|_{E^u(t)})^{-1}||| |||D_{\pi_t^u(x)} f_t^n|_{E^u(t)}||| |||D_x \pi_t^u|_{E^u(t)}|||$$

$$\ge e^{-\varepsilon/4} \mu_t^n e^{-\varepsilon/4} = e^{-\varepsilon/2} \mu_t^n.$$

Let K_1 be a large number such that for $x \in R_{\eta'}$ and g = f or f^{-1} if $g(x) \notin R_{\eta'}$ then $g^{K_1}(x) \notin R_{\eta}$, and K_2 be a positive integer satisfying $e^{-\varepsilon/2} \cdot \mu_t^{K_2} > 1$. Put $K = 2K_1 + K_2$. Then we have $|||D_x f_t^K|_{E^u(t)}||| > 1$ for $x \in \mathbb{T}^2$. Therefore it follows that f_t is Anosov by the technique of the proof of Proposition B (a).

Proof of Proposition D. For the proof we need Proposition B and the technique used in [L-Y]. Suppose the proposition is false. For $\varepsilon > 0$ we have (see [L-Y], Lemma 3.2 and Corollary 6.2) that there is a Borel set S such that the following conditions hold:

- (15) $\mu(S) > 0$.
- (16) There is a family $\{D_{\alpha}\}$ of C^2 arcs satisfying (16-1) $D_{\alpha} \cap D_{\alpha'} = \varnothing \quad (\alpha \neq \alpha'),$ (16-2) $S = \bigcup_{\alpha} D_{\alpha},$ (16-3) if $x \in D_{\alpha}$, then $D_{\alpha} \subset \tilde{W}^{u}_{\varepsilon}(x)$ and D_{α} is open in $\tilde{W}^{u}_{\varepsilon}(x)$.
- (17) Let $\{\mu_{\alpha}\}$ be a canonical system of conditional Borel probability measures, then each μ_{α} is absolutely continuous with respect to the Lebesgue measure

 m_{α} of D_{α} , and if $\rho_{\alpha}: D_{\alpha} \to \mathbb{R}^+$ is the density function of m_{α} , then there is L > 0 such that for $(x, y) \in D_{\alpha} \times D_{\alpha}$

$$\left|\log \frac{\rho_{\alpha}(y)}{\rho_{\alpha}(x)}\right| \le Ld_u(x,y).$$

By (16-3) and (17) we have

(18)
$$\left| \frac{\rho_{\alpha}(x)}{\rho_{\alpha}(y)} \right| \le e^{L\varepsilon}.$$

Since μ is a SBR measure of \mathbb{T}^2 by the assumption, μ -almost all x has a positive Lyapunov exponent. Then, for μ -a.e. x, E_x^u is the subspace corresponding to the exponent. Since $f \in \theta^2 \setminus A(\mathbb{T}^2)$, we have $||Df|_{E^u}|| \ge 1$ and thus $\ell(f^n D_\alpha) \ge \ell(D_\alpha)$. If a point in D_α has a positive Lyapunov exponent, then $\ell(f^n D_\alpha) \nearrow \infty$ as $n \to \infty$. Therefore, without loss of generality we can suppose that $\ell(f^n D_\alpha) \nearrow \infty$ for all α .

Let Λ be as in Proposition B and take $z \in \Lambda$. By Proposition B, z is a periodic point of f. For simplicity we assume that z is a fixed point. By Lemma 3 there exists $n(\alpha) = n \geq 0$ such that

$$f^n(D_\alpha) \cap W^s(z) \neq \emptyset$$
.

Thus we have

$$D_{\alpha} \cap W^{s}(z) = f^{-n}(f^{n}(D_{\alpha})) \cap W^{s}(z) \neq \varnothing.$$

Since D_{α} contains a point with the positive Lyapunov exponent, we can find a compact subset $C \subset W^s(z)$ such that

(19)
$$\mu\left(\bigcup_{\alpha} \{D_{\alpha} | D_{\alpha} \cap C \neq \varnothing\}\right) > 0.$$

Choose k > 0 such that $d_s(f^k(y), z)$ is small enough for all $y \in C$, and put $C' = f^k(C)$ for simplicity. Without loss of generality we can suppose

(20)
$$[\tilde{W}^{u}_{\tau}(z), C'] \subset \bigcup_{\alpha} f^{k}(D_{\alpha})$$

for $\tau>0$ small enough. Define $R_n=[\tilde{W}^u_{\tau}(z),f^n(C')]$ for $n\geq 0$. Then we have that for $n\neq m,\ R_n\cap R_m=\varnothing$ by taking the size of C' sufficiently small. We remark that there is $\eta>0$ such that for $y\in \tilde{W}^u_{\tau}(z)$ and $w\in C'$

$$(21) d_u([y,w],w) \ge \eta d_u(y,z)$$

since \mathcal{F}^s is a C^1 foliation of \mathbb{T}^2 .

Put $S_0 = \bigcup_{\alpha} f^k(D_{\alpha})$. Then S_0 is a Borel set satisfying the conditions (15), (16) and (17). Thus the μ -values of $[\tilde{W}^u_{\tau}(z), C']$ are positive by (18), (19) and (20). Since $\{[\tilde{W}^u_{\tau}(z), y] | y \in C'\}$ is a decomposition of $S_1 = [\tilde{W}^u_{\tau}(z), C']$, S_1 is a Borel set

satisfying (15), (16) and (17). Thus we have that

$$\sum_{n} \mu(R_{n}) = \sum_{n} \mu(f^{-n}(R_{n}))$$

$$= \sum_{n} \mu(f^{-n}([\tilde{W}_{\tau}^{u}(z), f^{n}(C')]))$$

$$= \sum_{n} \mu([f^{-n}(\tilde{W}_{\tau}^{u}(z)), C'])$$

$$\geq \sum_{n} e^{-L\varepsilon} \eta \ell(f^{-n}(\tilde{W}_{\tau}^{u}(z))) \quad \text{(by (18) and (21))}.$$

Since $\mu(R_1) > 0$, by applying Lemma 4 we have $\mu(\bigcup R_n) = \infty$. This is a contradiction.

References

- [A] D.V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Steklov Inst. Math. 90 (1967), 1–235. MR 39:3527
- [A-H] N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems, Mathematical Library, North-Holland, 1994. MR 95m:58095
- [B] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math. 470, Springer-Verlag, 1975. MR 56:1364
- [H] K. Hiraide, Expansive homeomorphisms of compact surfaces are pseudo-Anosov, Osaka J. Math. 27 (1990), 117–162. MR 91b:58184
- [H-Y] H. Hu and L.S. Young, Nonexistence of SBR measures for some diffeomorphisms that are 'Almost Anosov', Ergod. Th. & Dynam. Sys. 15 (1995), 67–76. MR 95j:58096
- [H-P] M. Hirsch and C. Pugh, Stable manifolds and hyperbolic sets, Global Analysis, Proc. Sympos. Pure Math. 14, Amer. Math. Soc. (1970), 133–163. MR 42:6872
- [L] F. Ledrappier, Propriétés ergodiques des measures de Sinai, Publ. Math. I.H.E.S. 59 (1984), 163–188. MR 86f:58092
- [L-Y] R. Ledrappier and L.S. Young, The metric entropy of diffeomorphisms I, Ann. of Math. 122 (1985), 509–539. MR 87i:58101a
- [M] R. Mañé, Contributions to the stability conjecture, Topology 17 (1978), 383–396. MR 84b:58061
- Y.B. Pesin, Families of invariant manifolds corresponding to non-zero characteristic exponents, Math. USSR Izvestija 10 (1978), 1261–1305. MR 56:16690
- $[R1] \quad \text{J. Robbin, } A \textit{ structural stability theorem}, \text{Ann. of Math. } \textbf{94} \text{ (1971)}, 447–493. } \text{MR } \textbf{44:}4783$
- [R2] C. Robinson, Stability theorems and hyperbolicity in dynamical systems, Rocky Mountain J. Math. 7 (1977), 425–437. MR 58:13200
- [R3] V.A. Rohlin, Lectures on the theory of entropy of translations with invariant measures, Russian Math. Surveys 22:5 (1967), 1–54. MR 36:349
- [S1] Ya.G. Sinai, Gibbs measures in ergodic theory, Russ. Math. Surveys 166 (1972), 21–69. MR 53:3265
- [S2] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817.
 MR 37:3598

Department of Mathematics, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji, Tokyo 192-03, Japan

E-mail address: sumi@math.metro-u.ac.jp